AMD Zen 4 Ryzen 9 7950X and Ryzen 5 7600X Review: Retaking The High-End

AMD Zen 4 Ryzen 9 7950X and Ryzen 5 7600X Review: Retaking The High-End

During AMD’s ‘together we advance_PCs’ event at the end of August, the company unveiled its Ryzen 7000 series of desktop processors, with four SKUs aimed at the mid-range and high-end market segments. After whetting the audience’s appetites with that announcement, tomorrow AMD will be officially releasing their long-awaited next-generation CPUs.

The launch of the Ryzen 7000 series brings a lot to digest, for casual fans and hardcore hardware enthusiasts alike. For their newest lineup of chips, AMD has given their desktop CPU platform a top-to-bottom update, not only releasing new CPUs, but releasing an entirely new platform, socket AM5 around it. As a result, for the first time in a few generations these chips are not drop-in compatible with existing AMD motherboards. But at the same time it has allowed AMD to deliver on a collection of platform improvements, ranging from DDR5 and PCIe 5.0 support to improved power management capabilities. AMD has even managed to sneak an entry-level Radeon RDNA2 architecture-based iGPU into the chip.

The Ryzen 9 7950X: 16 Cores, 32 Threads, New 170 W TDP: $699

We’ll start, as always, with the CPUs themselves. AMD’s flagship for this generation is the Ryzen 9 7950X, a 16 Zen 4 core CPU that AMD is looking to top the charts with for both single-threaded and multi-threaded workloads. The Ryzen 9 7950X has a base frequency of 4.5 GHz and a peak turbo clockspeed of 5.7 GHz, which makes it the highest clocked desktop x86 CPU to hit the market yet.

But don’t think AMD’s Zen 4 architecture is just about clockspeeds. AMD has also improved the IPC of their CPU architecture by an average of 13% – primarily relying on the addition of AVX-512 instruction support and comfortably larger caches and buffers throughout the CPU – which means that the Ryzen 7000 chips can deliver some significant performance improvements in a variety of single-threaded workloads.

As for multi-threaded workloads, AMD has been able to improve performance there as well, albeit with a reliance on both architecture improvements and higher TDPs to allow for higher sustained clockspeeds. One of the enabling factors here is that the AM5 platform allows for higher chip TDPs – up to 170W in the case of the 7950X – which is some 65W higher than the max TDPs on AMD’s fastest 16 core Ryzen 5000 parts. As a result AMD is in a good position to deliver on the “leadership” class performance that the company is after, but not entirely for free.

The Ryzen 9 7900X, Ryzen 7 7700X, and Ryzen 5 7600X

Moving one down the stack is the Ryzen 9 7900X, which is a 12C/24T and 170W TDP part; it has a higher base frequency than the 7950X of 4.7 GHz, but with a slightly lower boost frequency of up to 5.6 GHz.

Below that, AMD has launched one Ryzen 7 part designed for mid-range desktop computing, the Ryzen 7 7700X. This is an 8C/16T SKU, with a boost frequency on a single core of up to 5.4 GHz, and a base frequency of 4.5 GHz. Notably, unlike the Ryzen 9 parts, this part has a more typical-for-AMD TDP of 105W.

Finally, also aimed at the mid-range market and the cheapest member of AMD’s new product stack, we have the Ryzen 5 7600X. Offering 6C/12T with a TDP of 105W, the 7600X is Zen 4 at a more reasonable price point. The chip runs at a base frequency of 4.7 GHz, with a modest (compared to Ryzen 9) boost frequency on a single core of 5.3 GHz.
















AMD Ryzen 7000 versus Ryzen 5000
AnandTech Cores

Threads
Base

Freq
Turbo

Freq
Memory

Support
L3

Cache
TDP MSRP
Ryzen 9 7950X 16C / 32T 4.5GHz 5.7GHz DDR5-5200 64 MB 170 W $699
Ryzen 9 5950X 16C / 32T 3.4 GHz 4.9 GHz DDR4-3200 64 MB 105 W $799
 
Ryzen 9 7900X 12C / 24T 4.7GHz 5.6GHz DDR5-5200 64 MB 170 W $549
Ryzen 9 5900X 12C / 24T 3.7 GHz 4.8 GHz DDR4-3200 64 MB 105 W $549
 
Ryzen 7 7700X 8C / 16T 4.5GHz 5.4GHz DDR5-5200 32 MB 105 W $399
Ryzen 7 5800X 8C / 16T 3.8 GHz 4.7 GHz DDR4-3200 32 MB 105 W $449
 
Ryzen 5 7600X 6C / 12T 4.7GHz 5.3GHz DDR5-5200 32 MB 105 W $299
Ryzen 5 5600X 6C / 12T 3.7 GHz 4.6 GHz DDR4-3200 32 MB 65 W $299

Comparing apples to apples, so to speak, between the new Ryzen 7000 series parts to the previous-generation Ryzen 5000 series parts, Ryzen 7000 has made some big overall improvements to the chips’ capabilities. All of the Ryzen 7000 chips offer significant increases in both base and boost frequencies, which bodes well for overall performance. The worst we can say is that AMD hasn’t increased their core counts at any price point/market segment, so all of the performance gains we’ll see here today are entirely from architecture and clockspeeds, rather than the more immediate MT gains of throwing more silicon at the matter.

AMD’s performance gains have been made possible in part through the Zen 4 architecture’s superior power efficiency. While the Zen 4 architecture is modest refinement of Zen 3, delivering a 13% IPC improvement, it also gets the big advantage of being produced on TSMC’s 5 nm process node, a full node’s shrink from the TSMC 7nm process that was used for Ryzen 5000/3000. This efficiency has allowed AMD to boost clockspeeds without breaking the power bank, with the 105W TDP 7700X seeing a 700MHz improvement for no change in TDP. And multi-threaded performance is not left out in the cold, either; by increasing their top TDP to 170W, AMD is able to keep the CPU cores on their 12C and 16C parts at higher sustained turbo clocks, delivering much better performance there as well.

Of course one of the key arguments here is that more power calls for more cooling, which is very much true for the Ryzen 7000 series. Ryzen 7000’s TjMax for its Precision Boost Overdrive technology stands at 95°C, which means that the CPU will use all of the available thermal headroom right up to that point in order to maximize performance.

Although this can be overridden when manually overclocking, none the less the top-end Ryzen 7000 chips call for better cooling than their Ryzen 5000 counterparts. Users will need to employ more premium and aggressive coolers to squeeze every last drop of performance from Zen 4, as most of us are wont to do. AMD for their part has accounted for all of this with their design choices and product marketing, clearly advising Ryzen 9 79×0 owners to use a liquid cooler with these chips. Still, this does mean that AMD is not bundling their own CPU coolers with their retail SKUs, instead directing buyers to fairly powerful third-party coolers.

New AM5 Socket: AM4 Coolers will Support AM5 Too

AMD has also transitioned to a new chipset for Ryzen 7000, named AM5. Along with AM5 also comes a new socket, the LGA1718. Now what’s interesting is AMD has specified that most AM4 socketed coolers will support the new LGA1718 socket on AM5; this is great for keeping with compatibility from the previous generation.

This also means that AM4 is now a thing of the past, although it does offer some incredible right now, as well as support with the cheaper DDR4 too. AMD has of course switched to support for DDR5 memory, with JEDEC settings across all four CPUs set at DDR5-5200; an improvement in Intel’s 12th Gen Core series support for DDR5-4800.

AMD has unveiled four new chipsets, two Extreme variants named X670E and B650E, with two regular chipsets, aptly named X670 and B650, original and simple. The top tier X670E series will feature both PCIe 5.0 lanes to the top PEG slot, with support for PCIe 5.0 storage devices which are expected in November 2022. As for its regular X670 chipset, PCIe 5.0 to the PEG slot is optional, not mandatory, like on X670E.

The B650 chipsets are designed to be more affordable and, as such only feature PCIe 4.0 lanes to the PEG slot. They do, however feature at least one PCIe 5.0 x4 storage slot. The B650E is reserved for those lower-end boards that want to include PCIe 5.0 to the graphics card, although users looking to utilize PCIe 5.0 support should opt for,X670E; better boards, better controllers, and better specifications.

New I/O Die: TSMC 6nm For Ryzen 7000

As we’ve seen previously from the Ryzen 5000 series, AMD uses chiplet packaging, with two core complex dies (CCD) on its top SKU, with an I/O die hosting all of the PCIe 5.0, the integrated memory controller (IMC), and new for Ryzen 7000, two CU’s of AMD’s rDNA 2 integrated graphics. Some key advantages of AMD’s new 6 nm TSMC I/O die means more transistors, better efficiency at the manufacturing stage, and ultimately most importantly of all, from an efficiency point of view, lower overall power draw.

It’s time to dive deep into all of AMD’s new improvements and changes for its Zen 4 microarchitecture. Over the following pages we’ll, be going over the following:

  1. Ryzen 7000 Overview: Comparing Ryzen 7000 to Ryzen 5000 specifications
  2. Socket AM5: The New Platform For Consumer AMD
  3. More I/O For AM5: PCIe 5, Additional PCIe Lanes, & More Displays
  4. AM5 Chipsets: X670 and B650, Built by ASMedia
  5. DDR5 & AMD EXPO Memory: Memory Overclocking, AMD’s Way
  6. Ryzen 7000 I/O Die: TSMC & Integrated Graphics at Last
  7. Zen 4 Architecture: Power Efficiency, Performance, & New Instructions
  8. Zen 4 Execution Pipeline: Familiar Pipes With More Caching
  9. Test Bed and Setup
  10. Core-to-Core Latency
  11. SPEC2017 Single-Threaded Results
  12. SPEC2017 Multi-Threaded Results
  13. CPU Benchmark Performance: Power, Web, & Science
  14. CPU Benchmark Performance: Simulation and Encoding
  15. CPU Benchmark Performance: Rendering
  16. CPU Benchmark Performance: Legacy Tests
  17. Gaming Performance: 720p and Lower
  18. Gaming Performance: 1080p
  19. Gaming Performance: 4K
  20. Conclusion

#AMD #Zen #Ryzen #7950X #Ryzen #7600X #Review #Retaking #HighEnd

Leave a Comment

Your email address will not be published. Required fields are marked *